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TECHNICAL MEMORANDUM X-53500

AERO-ASTRODYNAMICS CONSIDERATIONS FOR THE APOLLO TELESCOPE MOUNT
By
Robert E. Lavender
George C. Marshall Space Flight Center

Huntsville, Alabama ;ﬂ.? }
ABSTRACT A

This report presents the results of preliminary analyses which
have been conducted by the Aero-Astrodynamics Laboratory relative to
the Apollo Telescope Mount (ATM). The ATM is an experimental package
consisting of a group of sensors in the visual, ultraviolet (UV),
extreme ultraviolet (XUV), and X-ray spectral regions, and the neces-
sary experimental support equipment to obtain scientific data by solar
observations from earth orbit. The ATM package is considered to be
hard-mounted to the Lunar Module (IM). Mission analysis, orbital aero-
dynamics, aerodynamic torque, orbital lifetime, dynamics and control
are discussed. Preliminary mission timelines are included.
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DEFINITION OF SYMBOLS

Definition
semi-major axis
attitude control gain
attitude rate control gain
reference area
axial force coefficient
drag force coefficient
normal force coefficient
eccentric anomaly

incident energy transported by molecules to a unit
surface in unit time

energy transported by reflected molecules away from a
unit surface in unit time

energy transported by reflected molecules away from a
unit surface in unit time if molecules were re-emitted
at the temperature of the surface

angular momentum of control moment gyro

moment of inertia

orbital inclination

molecule mass

aerodynamic moment

mean orbital angular velocity

number of molecules incident on a unit surface in unit
time

dynamic pressure

circular orbit radius
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DEFINITION OF SYMBOLS (Continued)
Definition
gas constant
molecular speed ratio
temperature of incident molecules
temperature of reflected molecules
wall temperature
velocity of spacecraft relative to rotating atmosphere
center-of-pressure location
center-of-gravity location
angle of attack; also, thermal accommodation coefficient
orbit eccentricity
control damping coefficient
angle between velocity vector and body surface element
gravitational constant for the earth, GMe
atmospheric mass density
control frequency

rotational rate of the earth's atmosphere
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TECHNICAL MEMORANDUM X~53500
AERO-ASTRODYNAMICS CONSIDERATIONS FOR THE APOLLO TELESCOPE MOUNT
SUMMARY

Preliminary analyses have been conducted on the Apollo Telescope
Mount (AT™) mission assuming the ATM to be hard-mounted on a Lunar

Module (IM). The LM is assumed to be modified to accept the ATM pack-
age.

Mission analysis is discussed and several mission profiles are
considered. Results are presented which show that the launch window
for the second launch can be extended by the use of a phasing ellipse.
Two preliminary timelines are included corresponding to docking the IM
to the Command Service Module (CSM) every twelve hours or every seven
days.

Results of orbital aerodynamics analyses are shown. The free-
molecule flow drag and normal force coefficients and center of pressure
location are shown as functions of angle of attack for both the IM
alone and docked CSM-IM configurations. These results are used in sub-
sequent analyses of aerodynamic torque disturbance and orbital lifetimes.
Orbital lifetimes have been obtained for several modes of mission dura-
tion and orbital storage.

Dynamics and control are briefly discussed.



I, INTRODUCTION

The Apollo Telescope Mount (ATM) is an experimental package consist-
ing of a group of sensors in the visual, ultraviolet (UV), extreme ultra-
violet (XUV), and X-ray spectral regions,and the necessary experimental
support equipment to obtain scientific data by solar observations from
earth orbit, Initial NASA planning for the ATM experiments considered
mounting the ATM package to the Apollo Service Module through a gimbal
arrangement, More recently, consideration has been given to operation
of the ATM experiments with the ATM package hard-mounted to the Lunar
Module (LM) and the entire spacecraft aimed toward the sun by use of
control moment gyros (CMG's).

The purpose of this report is to document the preliminary analyses
which have been made by the Aero-Astrodynamics Laboratory relative to
the IM-ATM mode of operation. It is intended that this report will
supplement and support the Marshall Space Flight Center's project develop-
ment plan for the ATM project. The preliminary analyses have been directed
toward the initial ATM mission (ATM-A) considering a dual launch of AAS
211/212. Two additional missions (ATM-B, ATM-C) may follow on later
flights.

The IM spacecraft used for the ATM mission consists of either an
IM ascent stage and an IM descent stage which has been modified to accept
the ATM experiments and experiment support equipment, or an LM ascent
stage with an attached rack holding the experiments and experiment sup-
port equipment. Part of the support equipment is a series of control
moment gyros for fine attitude control. Neither the ascent nor descent
propulsion engines are present for the IM-ATM configuration but the
IM reaction control system (RCS) remains and is used for momentum dump
of the CMG's.

II., MISSION ANALYSIS

The pacing item of all missions is that of the instrument unit (IU).
As long as the IU '"milestones" are met, the launch can proceed with a
predicted schedule. The first input to the development of the IU is the
Mission Defining Document (MDD) about 15 months prior to launch. This is
used to establish the basic logic for the flight computer, ''size' the com-
puter, scale the parameters, etc. The next input is that of the Final
Mission Defining Document (FMDD) about eight months prior to launch,
This was designed to be a fine tuning and update for the prescribed mis-
sion; however, major changes can be made at this time, The last program-
ming input for the IU is five months prior to launch at which time minor




changes (constants of the same magnitude) can be made. This time sequence
is contract controlled, and any deviation from this timeline must be the
result of a change board action.

To accomplish a program with the greatest degree of success requires
that the mission be well defined and that mission objectives, test require-
ments, and constraints’ be known by about five months before the MDD due
date (about 20 months prior to launch). This is necessary so that an
acceptable flight profile can be established that will comply completely
with the mission objectives and constraints. 1In the same time frame,
propulsion and mass data (best available) are necessary to start the
trajectory study.

Four months prior to the MDD due date, it is necessary to start
the complete trajectory study based on best available data. This lead
time is necessary as trajectory shaping must be done as well as satisfy-
ing the various mission constraints and requirements. This study can
take up to eight weeks depending on the complexity and originality of
the mission. Since other centers are involved, an interface must be
established and close working relationship maintained such that all
parties are in complete agreement and can 'tie" their studies together.
An output from this trajectory study is targeting parameters which are
an input for the guidance equation study.

Three months prior to the MDD date, a study should be initiated to
investigate all possible abort and alternate mission capabilities. With
the Saturn IB, the study is limited to one engine out. The completion
of this study is necessary two months before the MDD due date as it is
necessary input for the guidance equation study.

Two months before the MDD due date, four studies should be started,
two having a direct input to the MDD, and the other two relating to the
completion of the abort and alternate mission study,as the basic informa-
tion becomes available. First, the guidance equation study must be
started as it has direct input to the IU, This study must include as
much of the total mission logic as possible. This, then, allows the com-
puter designers to establish how much computer space will be available
for purposes other than guiding the flight, The study could last up to
six weeks depending upon mission complexity. Second, the rigid body
analysis must be started to see if the flight profile selected demands
maneuvers beyond the structural capability of the vehicle. This also
has a direct influence on the IU design. Third, with the completion of
the trajectory study, it is possible to establish an experiment timeline.
Fourth, at this same time, a complete study of lift-off and separation
can be initiated. This will signify any recontact problems which could
exist and the probability level lowered by retro maneuvers of spent
stages if any problem is detected. Once the experiment timeline has been



established, it is necessary to verify that the vehicle has the capability

to perform these experiments. Therefore, it is necessary to determine

what power sources are available and to what extent they can be used to

fulfill the desired mission. Another study which logically follows the

experiment timeline is that of the transmittal of accumulated data. This .
can be somewhat of a problem since the vehicle is in radio contact with

a given station for a given time duration. A time priority base must be

established for each receiving station such that collected data can be

properly transmitted and received. .

This completes the basic analysis which must be performed on any
mission. The rest of the time is spent on refinement of data, the updating
of studies, and simplification of methods used. The only unrelated study
is the flexible body study which is initiated at the FMDD due date. This
study includes bending dynamics and filter design check,

A typical data flow is presented in Figure 1. It should be noted
that at launch minus three months the IU is to be delivered to KSC for
final flight checkout. The timeline is referenced in months prior to
launch,

The mission analysis for the initial ATM (ATM-A) considering the
dual launch of AAS 211/212 is similar to that of the AS 207/208 mission
in that both are dual launches and require a rendezvous of the Command
Service Module (CSM) with an unmanned Lunar Module (IM). The two mis-
sions have basically the same launch vehicle powered flight profile so
that much of the AS 207/208 studies can be applied to the initial ATM
mission. One major difference is that the ATM mission is currently 4
planned for a near-circular 200 n.m. orbit., This is to be accomplished
with the use of the CSM after rendezvous at lower earth orbit,

Three mission profiles have been considered for the dual launch.
The profiles are summarized in Figures 2 through 4. All three cases
have considered that the CSM would be launched first (AAS 211), followed
approximately 24 hours later by the launch of the unmanned IM payload
with AAS 212, The first profile, Figure 2, considers the CSM is launched
into a 120 n.m. circular orbit followed by launch of the IM into an
ellipse with 80 n.m. perigee and variable apogee depending on launch
time, After one or more orbits, the CSM transfers to the IM ellipse
and docks. Table 1 shows the time to achieve rendezvous position as a
function of the number of phasing orbits. The remaining docking time,
considering a 7 1/2 hour S-IVB stabilization lifetime, is also shown.
The IM off-load versus launch window data shows the decrease in payload
weight required for increase in launch window time, After docking, the
CSM circularizes into a 200 n.m. orbit using Service Propulsion System
(SPS) burns.
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TABLE 1

Summary Table for LM Phasing Ellipse

Payload vs Launch Window

Number | Time to Achieve IM OFF Launch Docking Time
of Rendezvous Posi- Load Window Remaining
Orbits tion (hrs) (1bs) (min) (hrs)
0 3.6
11/4 1.87 300 4,7 5.63
1000 6.8
0 7.2
1 3/4 2.63 300 9.1 4,87
1000 13.1
0 7.3
2 1/4 3.37 300 9.2 4,13
1000 13,2
0 11.0
2 3/4 4,13 300 13.8 3.37
1000 19.3
0 11.1
3 1/4 4,88 300 13.3 2.62
1000 19.6
0 14.5
3 3/4 5.63 300 18.2 1,87
1000 25.3




The second profile, Figure 3, considers the CSM is launched into
a 120 n.m, circular orbit followed by launch of the IM into the same
orbit. The CSM then burns into a variable apogee to phase with LM.
The CSM then brakes at perigee in phase with IM and docks. After dock-
ing, the CSM circularizes into a 200 n. m, orbit using SPS burms., Table
2 shows the launch window available as a function of CSM phasing orbit
apogee, Time to achieve rendezvous and remaining docking time for a
7 1/2 hour S-IVB stabilization lifetime are also shown as a function of
the number of orbits for the phasing maneuver.

The third profile, Figure 4, considers the CSM to be launched into
a 100 n.m. circular orbit followed by the IM launched into an orbit
with 120 n.m. perigee and variable apogee depending on launch time., The
CSM then initiates the transfer maneuver, matches the velocity of IM in
the ellipse,and docks. After docking, the CSM circularizes into a 200
n.m. orbit, Table 3 shows the corresponding launch window and docking
time data for this profile. Of these profiles, the first one discussed
with IM elliptical phasing appears most attractive at this time since
the IM in its ATM configuration is not at all weight critical and con-
siderable flexibility can be maintained in choosing the LM phasing
ellipse apogee. The LM-ATM configuration is estimated to be 11,500 to
19,000 pounds from References 1 and 2, respectively.

The CSM has been considered to be launched first because of the
limited S-IVB stabilization lifetime for the unmanned IM payload and
the assumption that the CSM will dock to the IM and effect the IM/S-IVB
separation. For the ATM mission,however, there may be valid reasons for
launching the ummanned payload first, activating LM subsystems and
effecting separation from the S-IVB prior to the manned launch., The
operation of the IM-ATM spacecraft including proper attitude hold capa-
bility for the (MG system, may be desired before committing the manned
launch. Of course, if the IM-ATM payload is separated from the S-IVB
stage before CSM docking, then the short S-IVB stabilization lifetime
is no longer a problem. It is recommended that consideration be given
to this mode of operation.

Two preliminary timelines for the Apollo Telescope Mount mission
are presented in Appendices A and B, reflecting the assumption of crew
transfer every twelve hours or every seven days,respectively. Shown in
the timelines are crew scheduling of experiment and housekeeping duties,
and the geometric considerations of ascending and descending node posi-
tions, major land masses, day-night periods, and tracking. The list of
assumptions accompanies the timelines in Appendix A. Another possible
mode of operation is in the docked CSM-LM configuration during the entire
14 days. This mode has several advantages and disadvantages relative to
the undocked mode and will require analysis.
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TABLE 2

Summary Table for CSM Phasing Ellipse

Altitude of Apogee (H,) vs
Launch Window
Number | Time to Achieve H Launch Docking Time
of Rendezvous A Window Remaining
Orbits Position (hrs) (n.m,) (min) “(hrs)
350 4.5
1 1/2% 2,25 400 5.6 5.25
520 7.6
350 8.8
2 1/2 3.75 400 11.3 3.75
520 15.3
350 13.3
31/2 5.25 400 17.1 2,25
520 23.3

Kl/2 orbit allocated for orbit determination.

10




400 n mi
1. CSM launched into a 2 LM launched into a 120
100 n mi circular n mi perigee and variable
orbit and tracked. apogee ellipse, depending

on the launch time.

3. CSM optically tracks 4. CSM matches velocity of
LM and initiates LM in ellipse and docks.
transfer manuever.

FIG. 4.  MISSION PROFILE WITH LM PHASING ELLIPSE
AND CSM TRANSFER MANEUVER




TABLE 3

Summary Table for LM Phasing Ellipse and CSM Transfer Maneuver

Payload vs Launch Window

Number | Time to Achieve IM Off Launch Docking Time
of Rendezvous Posi- Load Window Remaining
Orbits tion (hrs) (1bs) (min) (hrs)
300 1.5
1000 2.8
1 2.25% 1700 5.1 5.25
2100 6.2
2800 8.3
300 3.0
1000 5.6
2 3.75 1700 10.1 3.75
2100 12,3
2800 16.6
300 4.4
1000 .5
3 5.25 1700 15.3 2.25
2100 18.4
2800 24.8
“An additional 1/2 orbit has been allocated for the transfer
maneuver,
12




III, ORBITAL AERODYNAMICS

The orbital aerodynamic characteristics of the orbiting vehicles
to be considered in the ATM program have been determined by standard
calculations. The approach and assumptions used for this analysis are
explained in this section.

A spacecraft passes through the atmosphere at orbital altitudes.
The aerodynamic characteristics of this craft depend on factors such as
shape, size, speed, and surface conditions as well as the properties of
the atmosphere such as density, temperature, and composition. The most
notable feature of this flight is that the density is so low that cor-
puscular behavior occurs. This means that the incoming molecules (rela-
tive to the spacecraft) which collide with the body are not influenced
by molecules which have already collided and are rebounding. This type
of flow is called free molecule flow and occurs normally when the mean
free path of the molecule (the average distance that a molecule travels
between successive collisions with other molecules) is 10 or more times
greater than the characteristic body dimension. The basic parameter
used to describe various flow regimes is the Knudsen number, K,, which
is the ratio of the mean free path to the characteristic dimension.

Since the incident flow to a body in the free molecule regime is
undisturbed by the presence of that body, the equilibrium velocity
distribution of the incident molecule is changed only by molecule-body
collisions, Therefore, the effects of the incident and reflected mole-
cules can be analyzed separately.

In free molecule flow, the forces and moments on a body are functions
of only three parameters and the geometric configuration of that body.
One parameter, the molecular speed ratio, is defined as,

(1)

where V, is the velocity of the body of interest, T; is the average tem-
perature of the incident molecules and is the second parameter; R is the
gas constant of the particular gas of interest. The third parameter, T,,
is the average temperature of the molecules reflected from the body sur-
face. T, and Tj are commonly used as the reflected-to-incident molecular
temperature ratio, T,/Tj.

13



The forces and moments acting on a body in free molecule flow are
a function of the molecule-surface interaction. This interaction is
considered in two parts, the momentum transferred to the surface and the
energy transferred to the surface. The momentum which is imparted to
the surface depends on the type of reflection; either specular (when
the angle of reflection equals the angle of incidence) or diffuse (when
the molecule strikes the surface and is re-emitted in a random direc-
tion). The fraction of the incident molecules which are diffusely reflec~
ted is known as the reflection coefficient. Specular reflection is not
considered in present calculations since molecule-surface interaction
experiments conducted to date on orbital vehicle type surfaces indicate
an almost completely diffuse reflection. Thus, the assumption of com-
pletely diffuse reflection in the flow field model introduces only a
slight error in the force coefficient values. In the case of diffusely
reflected molecules, momentum is transferred to the body surface only in
a normal direction (zero tangential momentum),

The degree of thermal equilibrium attained between the molecule and
body surface before re-emission of the molecule is measured by the energy
or thermal accommodation coefficient, «, defined as

E.
o = —=——=L (2)

where

E, is the total incident energy transported by the molecules
to a unit surface area in unit time,

E. is the total energy transported by the reflected molecules
away from a unit surface area in unit time, and

E_is the total energy the reflected molecules would transport
away from a unit surface area in unit time if they were
re-emitted at the temperature of the surface.

It will be shown later that Tr/Ti enters into the resultant force coef-
ficient equations as a measure of this energy effect. The assumption of
complete thermal accommodation, where T, = Ty, and @ = 1.0, is not as well
founded as the assumption of diffuse reflection. The thermal accommoda-
tion coefficient must be obtained experimentally or estimated based on
previous data for similar surfaces and incident molecular properties.

It is a function of molecule weight, surface temperature, the material,
finish, age, and history of the surface, and, when the molecules possess
a large mass motion, the history of the molecular speed ratio and the

14




direction cosines between the surface and the direction of mass flow,
Experimental values of the thermal accommodation coefficient obtained

to date for surfaces and impinging molecules typical of those at orbital
altitudes have the range 0.7 = @ £ 1.0. The error introduced in free
molecule force coefficient values by assuming & = 1.0 will be discussed
later.

The equation for the force on an element of area in free molecule
flow may be computed using kinetic theory relationships and a Maxwellian
velocity distribution. Since the effects of the incident and reflected
molecules can be analyzed separately, the total force on the element of
area is obtained by summing the force due to the incident molecules and
that due to the reflected molecules. A geometric assumption made here
is that the element of area is located on a flat or convex surface. A
concave surface would produce a force on the element of area due to the
molecules that have been reflected from other parts of the body, which
is not taken into account in the following equation. The force equation
is derived in Reference 3. The nondimensional free molecule force coef-
ficient equation resulting from this derivation is

_.2g2
L e 7 S }4“552 (1 + erf 9S)

% = —2— {(ek + 7L + 1t) [7(1 + erf S) +

L s\

1 _vEal2
+ L JT T, M(l+erf ¥8) + =z e 7D , (3)
2 i S S
where
k, £, t are direction cosines between the local x, y, and
z (with respect to an element of surface, y is the
inward directed normal and x and z are tangent to
the surface) axes and the desired force direction,
€, 7, 7 are direction cosines between the local x, y, and

z axes and the relative velocity vector.

This equation is exact within the physical assumptions of kinetic theory,
free molecule flow, diffuse reflection, and non-concave surfaces. Shadow-
ing on one portion of a particular shape by another portion of that shape
and the effect of the random thermal motion of the molecules are included
in the equation. Shadowing by one body on another is not included.

15



To examine the effect of thermal accommodation coefficients, we
look at equation (2), where one may write for diffusely reflected
molecules

E_ = 2m N; RT, (%)
E_ = 2m Nj RT, (5
and
E. = (1/2)m N, 4% + R, |4 + —e (6)
i i r iL (Q’Fl) ’
where
e-s2sin2e
@ = {(8,0) = .

Vi s sin 8(1 + erf S sin )
Solving equation (2) for Ey gives
EE=(1-oE, +0E.
T i W

Substituting for Ej, E,., and E, gives

- - 2 I S
2m Ni RTr (/21 - Dm Ni {%r + RTi {4 + T 1)}}-+ 2an1Ni RTW.

()
Simplifying and introducing equation (1) gives
. . ,
= (/21 - 2+ —ee
T, = (1/2)( o T, {% Lz + 7T l)l}-raTw (8)
and
Tr Sl-Oé! 7 1 Tw
= = SZ + |2 + — 9
T; 5 { { 2(¢+1)D+QT1' (9)

16




For a body surface normal to the relative velocity, V., and with

S > 5, which is the case for orbital altitudes of at least 1000 km or
less, 8 = 90° and @(S8,8) — 0; then

T T
T _(A-D |2, 5 v
Ti = 2 [S + 2} + O Ti . (10)

For a body surface parallel to the relative velocity, Vy, and for any
value of S, 6 = 0° and #(S,6) — =; then,

T T
r _ 1 -0 2 W
T [s + 2] tag . (11)

It is seen, therefore, that for practical orbital altitudes (S > 5),
equations (10) and (11) have essentially the same value. This indicates
that the reflected-to-incident temperature ratio, Tr/Ti’ is practically
unaffected by surface orientation.

Now, what is the effect of body surface temperature, T, on T/ Ti?
Consider a body in a 200 n.m. orbit, T; = 1470°K, with a surface tem-
perature of 300°K (the surface temperature presently assumed for all
orbiting bodies when determining the aerodynamic force coefficients for
that body). For a temperature variation over the surface of *50°K, the
ratio of Ty/Ti{ varies from 0.170 to 0.238. Then, for ¢ = 1, the assump-
tion in the present flow field model, Ty/Tj = Ty/Ti, and the ratio is
directly affected by the surface temperature variation. The assumed
+#50°K variation will then produce a 40 percent variation in T./Tj.
However, the contribution of the reflected molecules to the force
coefficient values is an order of magnitude less than that of the
incident molecules so that the actual effect of surface temperature
variation on the force coefficient magnitudes is less than 2 percent.
With ¢ <1 and S > 5, as is the actual case, the effect of surface tem-
perature variation on Tp/Tj is considerably less, becoming less than
1 percent as ¢ decreases below a value of 0.75. The effect on force
coefficient magnitudes is then negligible.

Finally, what is the effect of the thermal accommodation coef-
ficient, o, on Ty /Tj, thus, on the force coefficient magnitudes? Look-
ing again at equations (10) and (11), we see that as ( varies from 1 to
0, T¢/T; is radically affected and will vary from less than 0.2 to a
value of 50 or greater, depending upon the value of S. Since the
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contribution of the reflected molecules is multiplied by (Tr/Ti)l/Z,
this contribution to the force coefficient magnitudes can be increased
from an order of magnitude less than that of the incident molecules to
the same order of magnitude as & — 0. Therefore, variations in « can
significantly alter the force coefficient magnitudes.

Using the approach outlined above, orbital aerodynamic character-
istics for the CSM docked with the LM and for the IM alone have been
calculated. TFigures 5 through 12 present the axial force coefficient,
normal force coefficient, drag coefficient, and center of pressure for
these configurations for a 200 nautical mile orbit. Figure 13 shows
the reference positions for the center of pressure data. The coef-
ficients are based upon a reference area of 33.47 square meters,

These results were computed assuming that batteries supply power for
the l4-day mission in a "brute force'" approach, The use of solar cell
arrays complicates the determination of the free molecule flow aero-
dynamic characteristics which has not been performed at this time pend-
ing more definite information concerning the solar array designs. For
the case where ATM is placed in orbital storage at the end of the
l4-day mission and then reactivated at a later time, the battery
approach is not acceptable.

IV, AERODYNAMIC TORQUE

The free-molecule drag and normal force coefficients presented in
the previous section have been used for orbital lifetime analyses and
aerodynamic torque considerations. The orbital lifetime results are
discussed in the next section. This section presents the aerodynamic
torque analysis necessary for control analyses and CMG angular momentum
considerations,

The mass density of the upper atmosphere can be computed from a
series of equations given by Smith [4]. The maximum mass density, pp,
that can be expected at 200 n.m., altitude in the late '68 or early '69
time frame is obtained as 1,58 x 10~1© kg/m®. This value for mass
density is subsequently used for the calculation of dynamic pressure.

Neglecting terms of the order (Qe¢/n)Z, Sterne [5] shows that the
relative velocity of the spacecraft with respect to the rotating atmos-
phere can be expressed by

i/2 1 - 2 1/ 2
vV = o, L_LC__E‘EE 1 - Qe( c ) cos i l_-__G_Z_C_OS_l:. (12)
r a 1l - ¢ cos E n 1 +¢ccos Ef°
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For a circular orbit, this reduces to

n

r Qe cos 1
v, = (u/r)t/2 Ll - ————} (13)

where the first term is the inertial velocity for a circular orbit.

The relative velocity has been obtained for a 200 n.m. altitude
and found to be 7260 km/sec from the above equation, where

L= GMe = 0.3986 x 10° km3/sec?

6378 + 370 = 6748 km

H
Il

0 = 7.292 x 107° rad/sec

3)1/2

(u/r 1.139 x 1072 rad/sec

j=]
Il

cos 29,5°

0.8704.

cos i

The dynamic pressure, q, is then obtained:
q=(/2) o vf = 4,164 x 1072 N/m® (8.697 x 107° 1b/£ft%).

From the previous section, the maximum normal force coefficient
is 1.36 for LM alone and 3,04 for the docked CSM-IM configuration.
The corresponding center of pressure is 101 inches from the IM docking
collar for LM alone and 318 inches from the SM nozzle exit plane for
the CSM-1IM vehicle,

Current estimates from Propulsion and Vehicle Engineering Laboratory
place the center of gravity at IM Station 187 for IM alone and at IM
Station 390 for the CSM~IM docked configuration. 1In the docked con-
figuration, the nozzle exit plane of the SM is 387 inches from the dock-
ing collar where the docking collar corresponds to LM Station 312.5.
From these results, the center of pressure is 24,5 inches closer to the
docking collar than the center of gravity for the IM alone. For the
docked CSM-IM vehicle, the center of pressure is 8.5 inches closer to
the docking collar than the center of gravity. Considering the ''nose"
to be the opposite end from the SM nozzle and a-'"nose-up' moment as
positive, the aerodynamic torque from these results would be positive
(nose-up) for the CSM-IM vehicle and negative (nose-down) for the IM
alone configuration. The magnitude of the maximum aerodynamic moment
is as follows:
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IM Alone

M= CyqA lxcp - Xcgl
= (1.36)(4.164 x 10-2 N/m®) (33.47 m°) (0.62 m)
= 0,118 N-m (0.087 ft-1b).
CSM-1IM
M= CyaA [X, - Xl

(3.04) (4.164 x 103 N/m®) (33.47 m?) (0.22 m)

0.093 N-m (0.069 ft-1b).

Thus, it is observed that the aerodynamic disturbance torque is
about the same magnitude for both configurations,

V. ORBITAL LIFETIME

The orbital lifetime for proposed configurations and modes of
operation are presented in this section., 1In considering the lifetimes
associated with the various orbiting configurations and modes of opera-
tion, the masses, drag coefficients, altitudes, and atmospheric density
are the most critical parameters. All the lifetimes are therefore pre-
sented as a function of altitude. The atmospheric density, which is
probably the most critical of parameters associated with predicting
orbital lifetime, is directly associated with solar activity. That is,
as solar activity increases, the density of the atmosphere increases,
and hence, the higher the solar activity the lower the orbital lifetime.
The lifetime studies were based on a late 1968 launch which is predicted
to be the period of maximum solar activity. The statistical deviations,
*20, are based on predicted variations in the present solar cycle which
will attain its maximum in late 1968 or early 1969.

The four modes of operation which were investigated are as follows:
(a) TFourteen days broadside, three month tumbling.

(b) Fourteen days broadside, six month tumbling.
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(c) Twenty-eight days broadside, three month tumbling.
(d) Twenty-eight days broadside, six month tumbling.

These modes represent cycles of operation time during which there occur
fourteen or twenty-eight days of orbital experimentation and three or
six months of IM orbital storage. These cycles of operation were
assumed to recur throughout the orbital lifetime. Although the results
have been obtained for the broadside mode during the active mission
periods, the vehicle will actually be inertially oriented toward the
sun, As the vehicle emerges from the earth's shadow, it will be aligned
fairly well with the velocity vector. At noon the vehicle is traveling
broadside, and at dusk it is essentially aligned again with the velocity
vector. This assumes that the ATM spar is along the vehicle's center-
line. The broadside assumption for lifetime analysis gives conservative
results for the IM and CSM-IM configurations without solar cell arrays.
With solar cells, the drag coefficient will increase appreciably at

low angle of attack. The broadside drag will not increase since the
solar panels are edge on to the velocity vector.

Figures 14 through 17 present results of the lifetime studies for
the LM configuration. Since the broadside drag coefficient is 1.34 and
the tumbling drag coefficient is 1.31, the lifetimes for the four orbit-
ing modes are essentially the same. The configuration mass assumed is
8182 kg (18,000 1lbm). These results are based upon the previous drag
data presented which do not include solar panels.

Figures 18 through 21 show the corresponding results for the CSM-IM
configuration. The broadside drag coefficient is 3.04, and a mass of
18,182 kg (40,000 lbm) was assumed. For the orbital storage periods,
the LM tumbling drag of 1.31 and LM mass were used, These results can
be considered quite applicable for the CSM-IM vehicle with solar panels
since it is estimated that the vehicle drag at low angle of attack
(with solar panels broadside) is less than the vehicle broadside drag
used. For orbital storage, the panels are stored about the LM vehicle
in such a way that the tumbling drag with panels may not exceed the
tumbling drag without panels,

More extensive analysis is needed relating to orbital aerodynamics
with solar panels since these panels will shade other portions of the
vehicle at various angles of attack and sideslip and complicate the
analysis. When these more detailed aerodynamic characteristics are
available, more detailed aerodynamic torque disturbance and orbital
lifetime analyses can be conducted.
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VI. DYNAMICS AND CONTROL-

Several of the dynamic, stability, and control problems and the
analytical methods for their solution are outlined below. These problems,
in general, are very similar to those for the Saturn vehicles and other
spacecraft analyzed previously. The methods now used should be suf-
ficient, with few exceptions, for analysis of the ATM. Some of the
specific computer programs now used are, of course, highly specialized
for greater efficiency. The amount of specialized methods to be developed
for the AT™ would depend on the number of configurations to be analyzed
and possibly the need to include effects now neglected.

The free vibration analysis would probably be straightforward but
could require a moderately large manpower effort if a detailed struc-
tural model is needed. An energy method would be most likely, probably
something similar to the VISA program now used for the uprated Saturn I
vehicle. This superimposed normal mode technique has been found to be
accurate, convenient, and economical. Of course, the exact technique
cannot be determined until after a study of the structure. The present
knowledge of part of the structure should be very useful and reduce the
total effort required.

The above discussion has considered the structure to be linear.
This would need to be verified. The presence of large nonlinearities
would greatly complicate the analysis. An analysis would probably need
to be specially developed.

The structural damping would probably be very similar to that of
present vehicles for earth enviromment, The changes due to space environ-
ment would need to be carefully examined, especially since a long life-
time is desired. This laboratory has sponsored damping studies in the
past and is currently examining literature on space envirommental effects.

Propellant slosh dynamics would need to be analyzed. Low-g slosh
analysis methods are now fairly well developed and progress toward better
understanding of the phenomenon is good. A useful slosh analysis for the
AT™ should be possible.

Current control system stability and response analyses should be
totally adequate for the ATM system if no nonlinearities occur. Present
equations would require very little or no change. A system with non-
linearities would require more analysis. Presently, a system of com-
puter programs is used for these analyses. The first generates the
coefficient of the matrices for the system. This program may need some
minor modification since the input format could depend on the method
of structural vibration analysis. The stability program could probably
be used without alteration. The response program may require addition
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of a different forcing function to simulate crew movements. The crew
movements and the crew's physical movement reactions to vehicle motions
would be part of the feedback loop and their random movements would

need to be known, These programs are used as a system,and data handling
is done by magnetic tape to reduce chance of human error.

One of the first items to be studied should be docking dynamics.
This would include rigid and flexible body stability analysis of the
control system during coupling, slosh dynamics, and coupling forces.
Analyses for these items are now under development., Dynamics and con-
trol analyses while in the docked configuration also will require exten-
sive study if a docked mode of ATM operation is choosen.

It is easily shown that if the control frequency and damping of
the IM with CMG control is 1.3 cycles per second and 0.7, respectively,
then when the CSM docks, the control frequency and damping are reduced
about one-half with the IM holding the control gains constant. For
example, the approximate equations [2] for the control frequency and
damping are

w = % —_— (14)

aoH ) ai W,
I 2 °
o

Lo = (2/3) (ai/ay) (15)

When the CSM docks, the total configuration moment of inertia, I, may
increase by a factor of about four, thus effecting the reduction of con-
trol frequency and damping, If the first mode structural frequency of
the combined vehicle is at least 1.3 cycles per second, then there will
be a one octave or more frequency difference between the first structural
mode and the control frequency. No additional stability problems would
be anticipated that were not already inherent in the IM-CMG system.
However, the response time of the docked vehicle would be twice as long,
and the disturbances would require a longer time to damp out compared

to the LM configuration.

If the control sensors are located near the sources of applied
moment, then the structural bending modes are usually phase stabilized.
Although the bending itself is stable, the system with flexible dynamics
will no longer possess the same desired dominant root characteristics as
the simplified rigid body system. Usually the system must be analyzed
by root locus, and the control gains adjusted to produce the desired
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results, The control system of the docked IM and CSM with sensors
located near the CMGs will produce phase stable structural modes with-
out additional compensation by filters. However, as in booster control
with point-of-force sensing, the system with flexible dynamics must be
analyzed and the control gains adjusted to produce the desired dominant
root location in the complex plane.

In conclusion, analysis programs have already been developed in
the areas of structural-free vibration, vehicle stability, and vehicle
response, The docking dynamics mode is a straightforward extension of
these methods. The damping and low-g slosh problems may still require
some state-of-the-art development. Progress is now being made in these
areas, especially in low-g slosh, where much advanced work is being
sponsored by this laboratory. The presence of nonlinearities would
complicate but would not basically change the solution of the problem.

VII., CONCLUSIONS

1. More detafled mission analysis is necessary to firmly define
the mission, This report assumes a dual launch with the CSM launched
first, rendezvous at low earth orbit with use of the CSM for transfer
tc the higher orbit, and operation of the IM in an undocked mode.

2. More detailed timeline analyses must be performed when better
information is available relative to experiment requirements. This
report assumes four experiments, several of which may not be compatible
with the flight schedule. Early selection of experiments for the first
ATM mission must be made.

3. More detailed analysis of the aerodynamic disturbance torques
about all three body axes is needed as the vehicle orbits about the
earth in an inertially fixed attitude pointing toward the sun. These
data will then provide time histories of the aerodynamic disturbance to
be considered with gravity gradient disturbances for analysis of the
control moment gyro dumping requirements.

4, Detailed free-molecule flow analysis is needed throughout the
entire pitch and yaw angle-of-attack regions using the flight configura-
tion to be used for the AT mission. If solar panels are to be used,
they must be included in the analysis. Whether or not the mission is
performed in a docked or undocked mode will influence these results.
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5. Additional lifetime studies may be required, especially if
the LM with solar panels is used in the undocked mode. These studies
cannot be performed, however, until the free-molecule drag character-
istics are computed for this configuration.

6. Extensive dynamics and control analyses will be required to
properly assess the capability of the spacecraft to perform the ATM
fine attitude control requirements., This is especially true if the
mission is performed in the docked mode.

7. Many areas of interest to this laboratory have not been touched
upon. The proper processing and disposition of telemetered data are an
example., The MSFC Flight Evaluation Working Group will provide post-
flight engineering evaluation support for the mission. More detailed
planning of experimental data retrieval can be made when the require-
ments are better defined,
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APPENDIX A

Preliminary Timeline Analysis for Crew Transfer Every Twelve Hours

A preliminary timeline is presented herein for the ATM mission to
investigate specific solar features in detail with a complement of instru-
ments measuring in the white light, ultraviolet, extreme ultraviolet, and
X-ray regions of the spectrum. The major emphasis of such experiments
would be to investigate activity regions on the solar. disk or in the
corona to determine the characteristics of specific phenomena. Four

experiments are considered for this mission:
a. Ultraviolet Spectrometer, Harvard College Observatory, (HCO).
b. Ultraviolet Spectrograph, Naval Research Laboratory, (NRL).

c. Extreme UV/X-ray Spectroheliographs, Goddard Space Flight
Center (GSFC).

d. White Light Coronagraph, High Altitude Observatory, (HAO).
The timelines reflect the following assumptions:
a. Mission duration of 14 days.

b. Launch was selected to be from Cape Kennedy in the early
morning into a 200 n.m. orbit with an inclination of 29.5°,

c. The vehicle model consists of the CSM and the IM in which
the telescopes are mounted. The IM is released from the CSM during the
experiments; the CSM must rendezvous and dock with the IM for change of
crew. A total of 1 1/2 hours was allotted for rendezvous, docking and
crew transfer,

d. Two crew members remain in the CSM while the other performs
the experiments in the IM for a 12-hour duration. All crew members
rotate. No astronaut will remain in the IM for a period of longer than
12 hours.

e, Observing requirements for the four study experiments con-
ducted in the IM are presented in Table 1A. Three modes of experiment
observing are defined by these requirements,

(1) Patrol mode: Experiments in standby condition with
course-sun orientation, and astronaut may monitor solar activity. No
data acquisition performed. This mode is represented in the timelines

as [/1//11111] .

43



(2) Standard mode: Scheduled observations of solar regions
for data acquisition periods of 1 to 10 minutes.

(3) Activity mode: Observations of active solar regions
for data acquisition periods of 20 minutes or greater. This mode is
designated in the timelines by the AM in the upper right of the experi-
ment scheduled.

f. An EVA, Extra-Vehicular Activity, occurs on the seventh
and final days for data retrieval,

g. Sleep periods precede and follow a IM tour of duty. A nap
may occur in the IM, Astronauts do not necessarily sleep simultaneously.
Astronauts are scheduled at least seven and one-half hours of sleep per
day.

h, There will be two hot meals of 45 minute duration each,
and one snack of 30 minutes each day. A transfer of a food supply into
the IM occurs each third day as snacks may occur in the IM,

i, Two personal hygiene periods per day for each astronaut is
assumed,

j. There will be a CSM system check of 30 minute duration each
12 hour #1 hour, with a total of 3 checks per day. A CSM system check
is designated by CSM.

k., The IM requires a 10 minute systems check performed six
times each day. A IM check occurs as each astronaut enters the 1M,
another during the shutdown procedure following an operational labora-
tory period. A IM systems check is designated by IM,

1. Thirty minutes is assumed for LM checkout and axis align-
ment upon entering the LM.

m, Each astronaut will perform a five-minute safety check of
his personal equipment each 13 hours or less.

The timelines contain the following information:

a. Mission time in hours from launch is marked on top of the
timeline,.

b. Cl, C2, and C3 lines represent the activities of each
crew member,




c. Following the crew activities is a row designated '"node."
The "D" and "AY signify the descending nodal crossing and ascending
nodal crossing, respectively, at the times showm.

d. This mission is independent of a strict launch time;
however, a representative day-night scale is given,

e, The row designated "land" shows when the spacecraft is
over major land masses and specifies which land mass by the code refer-
enced in the list of symbols.

f. Tracking station coverage is shown on the last line, The
individual stations are abbreviated and are defined in the list of
symbols,
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TABLE 1A
" EXPERIMENT OBSERVING REQUIREMENTS
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(a) Assumes 5 data samples (approximately 1 minute each) for each sequence distributed over one orbit

at 12 minute intervals,

(b) GSFC experiment in standby operation as activity detector.



LIST OF SYMBOLS

I. C1 Crew member 1
2, C2 Crew member 2
3. C3 Crew member 3
4. D Descending node
5. A Ascending node
6. Day Means vehicle in sunlight
7. P.H, Personal hygiene
8. SC Safety package check
9., SA South America
10, US United States
11. AF Africa
i2. AU Australia
13. AS Asia
14, MX Mexico
15. ME Middle East
16. BDA Bermuda
17. ANT Antigua
18. ASC Ascension
| 19. CYI Canary
20. MAD Madrid
21. CRO Carnarvon
22. CNB Canberra
23. GUA Guam
24, HAW Hawaii
25, GYM Guaymas
26. GST Goldstone
27. TEX Texas
28. PRE Pretoria
29. LEM LEM System check
30. AIM Vehicle & camera alignment
31. HCO Harvard College Observatory



32, HAO High Altitude Observatory

33, GSrcC Goddard Space Flight Center

34. AM Activity Mode

35. NRL Naval Research Laboratory

36. Transfer Astronauts go from LEM to CSM and vice versa

37. A GSFC experiment operating

38. O HAO experiment operating

39. /1] Patrol mode: Standby condition with course sun orientation

and astronaut monitoring solar activity.
No data activity performed.

40, EVA Extravehicular activity

41, CMG spin up Control moment gyro spin up

NOTE: Madrid, Canberra, and Goldstone have 85-foot dishes and cannot
track in earth orbit. They are for deep space tracking. Other available
tracking sites not included here are White Sands, Patrick, Eglin, KSC,
Pt. Arguello, Grand Bahama Island, and Grand Turk Island. Future
updating of these timelines will take this into account.
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APPENDIX B

Prelimipary Timeline Analysis for Crew Transfer Every Seven Days

The attached timeline is for use with the text of Appendix A. This
timeline differs from the other timeline in the assumption that two
astronauts may remain in the IM for a period of seven days. This assump-
tion eliminates the need for frequent rendezvous, docking, and crew
transfer shown in the other timeline, Other assumptions remain the same,

with experiment scheduling according to Table 1A shown in Appendix A,
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